21,888 research outputs found

    A critical analysis of the hydrino model

    Full text link
    Recently, spectroscopic and calorimetric observations of hydrogen plasmas and chemical reactions with them have been interpreted as evidence for the existence of electronic states of the hydrogen atom with a binding energy of more than 13.6 eV. The theoretical basis for such states, that have been dubbed hydrinos, is investigated. We discuss both, the novel deterministic model of the hydrogen atom, in which the existence of hydrinos was predicted, and standard quantum mechanics. Severe inconsistencies in the deterministic model are pointed out and the incompatibility of hydrino states with quantum mechanics is reviewed.Comment: 9 page

    Modelling of Electroluminescence in Polymers Using a Bipolar Charge Transport Model

    No full text
    Electroluminescence (EL) in polymeric materials is thought to occur due to the energy dissipation process from the recombination of opposite polarity charge carriers. It is considered as an indication of storage and transport of charge carriers in cable insulation subject to electrical stresses and may indicate the change in charge movement due to aging or degradation processes. Under ac electric fields, the interaction of opposite polarity charge carriers at the interface of polymer/conductor is enhanced compared with dc conditions, and seems to contribute a lot to the electroluminescence rather than the charge behaviours in the bulk of polymers. The dynamics of charge carriers both at the interface of polymer/conductor and in the bulk of polymers is investigated through a simulation work using a bipolar charge transport model. Figure 1 compares experimental electroluminescence results with simulated data from the recombination of injected charge carriers. The paper will give more details on EL model and comparison under various waveforms and frequencies

    A Comparison between Electroluminescence Models and Experimental Results

    No full text
    Electrical insulation ages and degrades until its eventual failure under electrical stress. One cause of this relates to the movement and accumulation of charge within the insulation. The emission of a low level of light from polymeric materials while under electrical stressing occurs before the onset of currently detectable material degradation. This light is known as electroluminescence (EL) and under an ac electric field is thought to relate to the interaction of charge in close proximity to the electrode-polymer interface. Understanding the cause of this light emission gives a very high-resolution method of monitoring charge interaction and its influence on material ageing. A possible cause of this light emission is the bipolar charge recombination theory. This theory involves the injection, trapping and recombination of charge carriers during each half cycle of the applied field [1]. This work compares two models that to simulate the EL emission according to this bipolar charge recombination theory. Model 1 assumes a fixed space charge region and all injected charge is uniformly distributed in this region with charges able to either become trapped or to recombine with opposite polarity charge carriers [2]. This recombination relates directly the excitation needed for the emission of a photon of light as measured in experiments. Model 2 develops on this by accounting for the transport and extraction of charge with an exponential distribution of trap levels rather than a uniform distribution [3]. Figure 1 shows a good correlation between the two models and experimental data. The full paper will describe the models in more detail and present results comparing the simulated and experimental results under various applied waveforms. Model 1 and model 2 both provide a good correlation with experimental data but model 2 allows a greater understanding of the space charge profile in the region close to the electrodes as well as the shape of the conduction current. Further work involves developing these models to support changes in the charge trapping profiles due to material ageing and supporting simulated results with measured conduction current

    Feminist Geopolitics: Material States

    Get PDF
    No abstract available

    Substrate influence on the plasmonic response of clusters of spherical nanoparticles

    Full text link
    The plasmonic response of nanoparticles is exploited in many subfields of science and engineering to enhance optical signals associated with probes of nanoscale and subnanoscale entities. We develop a numerical algorithm based on previous theoretical work that addresses the influence of a substrate on the plasmonic response of collections of nanoparticles of spherical shape. Our method is a real space approach within the quasi-static limit that can be applied to a wide range of structures. We illustrate the role of the substrate through numerical calculations that explore single nanospheres and nanosphere dimers fabricated from either a Drude model metal or from silver on dielectric substrates, and from dielectric spheres on silver substrates.Comment: 12 pages, 13 figure

    The healing mechanism for excited molecules near metallic surfaces

    Full text link
    Radiation damage prevents the ability to obtain images from individual molecules. We suggest that this problem can be avoided for organic molecules by placing them in close proximity with a metallic surface. The molecules will then quickly dissipate any electronic excitation via their coupling to the metal surface. They may therefore be observed for a number of elastic scattering events that is sufficient to determine their structure.Comment: 4 pages, 4 figures. Added reference

    Dynamic Modes of Microcapsules in Steady Shear Flow: Effects of Bending and Shear Elasticities

    Full text link
    The dynamics of microcapsules in steady shear flow was studied using a theoretical approach based on three variables: The Taylor deformation parameter αD\alpha_{\rm D}, the inclination angle θ\theta, and the phase angle ϕ\phi of the membrane rotation. It is found that the dynamic phase diagram shows a remarkable change with an increase in the ratio of the membrane shear and bending elasticities. A fluid vesicle (no shear elasticity) exhibits three dynamic modes: (i) Tank-treading (TT) at low viscosity ηin\eta_{\rm {in}} of internal fluid (αD\alpha_{\rm D} and θ\theta relaxes to constant values), (ii) Tumbling (TB) at high ηin\eta_{\rm {in}} (θ\theta rotates), and (iii) Swinging (SW) at middle ηin\eta_{\rm {in}} and high shear rate γ˙\dot\gamma (θ\theta oscillates). All of three modes are accompanied by a membrane (ϕ\phi) rotation. For microcapsules with low shear elasticity, the TB phase with no ϕ\phi rotation and the coexistence phase of SW and TB motions are induced by the energy barrier of ϕ\phi rotation. Synchronization of ϕ\phi rotation with TB rotation or SW oscillation occurs with integer ratios of rotational frequencies. At high shear elasticity, where a saddle point in the energy potential disappears, intermediate phases vanish, and either ϕ\phi or θ\theta rotation occurs. This phase behavior agrees with recent simulation results of microcapsules with low bending elasticity.Comment: 11 pages, 14 figure
    • …
    corecore